Large spin splitting in the conduction band of transition metal dichalcogenide monolayers
نویسندگان
چکیده
We study the conduction band spin splitting that arises in transition metal dichalcogenide (TMD) semiconductor monolayers such as MoS2, MoSe2, WS2, and WSe2 due to the combination of spin-orbit coupling and lack of inversion symmetry. Two types of calculation are done. First, density functional theory (DFT) calculations based on plane waves that yield large splittings, between 3 and 30 meV. Second, we derive a tight-binding model that permits to address the atomic origin of the splitting. The basis set of the model is provided by the maximally localized Wannier orbitals, obtained from the DFT calculation, and formed by 11 atomiclike orbitals corresponding to d and p orbitals of the transition metal (W, Mo) and chalcogenide (S, Se) atoms respectively. In the resulting Hamiltonian, we can independently change the atomic spin-orbit coupling constant of the two atomic species at the unit cell, which permits to analyze their contribution to the spin splitting at the high symmetry points. We find that—in contrast to the valence band—both atoms give comparable contributions to the conduction band splittings. Given that these materials are most often n-doped, our findings are important for developments in TMD spintronics.
منابع مشابه
On the Stability and Electronic Structure of Transition-Metal Dichalcogenide Monolayer Alloys Mo1-xXxS2-ySey with X = W, Nb
Layered transition-metal dichalcogenides have extraordinary electronic properties, which can be easily modified by various means. Here, we have investigated how the stability and electronic structure of MoS2 monolayers is influenced by alloying, i.e., by substitution of the transition metal Mo by W and Nb and of the chalcogen S by Se. While W and Se incorporate into the MoS2 matrix homogeneousl...
متن کاملSpin-orbit engineering in transition metal dichalcogenide alloy monolayers.
Binary transition metal dichalcogenide monolayers share common properties such as a direct optical bandgap, spin-orbit splittings of hundreds of meV, light-matter interaction dominated by robust excitons and coupled spin-valley states. Here we demonstrate spin-orbit-engineering in Mo(1-x)WxSe2 alloy monolayers for optoelectronics and applications based on spin- and valley-control. We probe the ...
متن کاملSpin-degenerate regimes for single quantum dots in transition metal dichalcogenide monolayers
Strong spin-orbit coupling in transition metal dichalcogenide (TMDC) monolayers results in spin-resolvable band structures about the K and K ′ valleys such that the eigenbasis of a two-dimensional quantum dot (QD) in a TMDC monolayer in zero field is described by the Kramers pairs |0〉− = |K ′ ↑〉 , |1〉− = |K ↓〉 and |0〉+ = |K ↑〉 , |1〉+ = |K ′ ↓〉. The strong spin-orbit coupling limits the usefulne...
متن کاملNonlinear Rashba spin splitting in transition metal dichalcogenide monolayers.
Single-layer transition-metal dichalcogenides (TMDs) such as MoS2 and MoSe2 exhibit unique electronic band structures ideal for hosting many exotic spin-orbital orderings. It has been widely accepted that Rashba spin splitting (RSS) is linearly proportional to the external field in heterostructure interfaces or to the potential gradient in polar materials. Surprisingly, an extraordinary nonline...
متن کاملDesign of Biosensors Based Transition-Metal Dichalcogenide for DNA-base Detection: A First-Principles Density Functional Theory Study
The main function purpose of nanobiosensors is to sense a biologically specific material and the kind of sensing platform and doping engineering has been an emerging topic and plays an important role in monolayer molybdenum disulfide (mMoS2). In this paper, we theoretically reveal the electronic structures of mMoS2 doped by 3d transition metals. Furthermore, adsorption of nucleic acid [Adenine ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2013